53 research outputs found

    Paucity of CD4+ Natural Killer T (NKT) Lymphocytes in Sooty Mangabeys Is Associated with Lack of NKT Cell Depletion after SIV Infection

    Get PDF
    Lack of chronic immune activation in the presence of persistent viremia is a key feature that distinguishes nonpathogenic simian immunodeficiency virus (SIV) infection in natural hosts from pathogenic SIV and HIV infection. To elucidate novel mechanisms downmodulating immune activation in natural hosts of SIV infection, we investigated natural killer T (NKT) lymphocytes in sooty mangabeys. NKT lymphocytes are a potent immunoregulatory arm of the innate immune system that recognize glycolipid antigens presented on the nonpolymorphic MHC-class I-like CD1d molecules. In a cross-sectional analysis of 50 SIV-negative and 50 naturally SIV-infected sooty mangabeys, ligand α-galactosylceramide loaded CD1d tetramers co-staining with Vα24-positive invariant NKT lymphocytes were detected at frequencies ≥0.002% of circulating T lymphocytes in approximately half of the animals. In contrast to published reports in Asian macaques, sooty mangabey NKT lymphocytes consisted of CD8+ and CD4/CD8 double-negative T lymphocytes that were CXCR3-positive and CCR5-negative suggesting that they trafficked to sites of inflammation without being susceptible to SIV infection. Consistent with these findings, there was no difference in the frequency or phenotype of NKT lymphocytes between SIV-negative and SIV-infected sooty mangabeys. On stimulation with α-galactosylceramide loaded on human CD1d molecules, sooty mangabey NKT lymphocytes underwent degranulation and secreted IFN-γ, TNF-α, IL-2, IL-13, and IL-10, indicating the presence of both effector and immunoregulatory functional capabilities. The unique absence of CD4+ NKT lymphocytes in sooty mangabeys, combined with their IL-10 cytokine-secreting ability and preservation following SIV infection, raises the possibility that NKT lymphocytes might play a role in downmodulating immune activation in SIV-infected sooty mangabeys

    B cell antigen receptor signal strength and peripheral B cell development are regulated by a 9-O-acetyl sialic acid esterase

    Get PDF
    We show that the enzymatic acetylation and deacetylation of a cell surface carbohydrate controls B cell development, signaling, and immunological tolerance. Mice with a mutation in sialate:O-acetyl esterase, an enzyme that specifically removes acetyl moieties from the 9-OH position of α2–6-linked sialic acid, exhibit enhanced B cell receptor (BCR) activation, defects in peripheral B cell development, and spontaneously develop antichromatin autoantibodies and glomerular immune complex deposits. The 9-O-acetylation state of sialic acid regulates the function of CD22, a Siglec that functions in vivo as an inhibitor of BCR signaling. These results describe a novel catalytic regulator of B cell signaling and underscore the crucial role of inhibitory signaling in the maintenance of immunological tolerance in the B lineage

    Postnatal Acquisition of Primary Rhesus Cytomegalovirus Infection is Associated With Prolonged Virus Shedding and Impaired CD4+ T Lymphocyte Function.

    No full text
     Although virus-specific CD4(+) T lymphocytes emerge rapidly during primary cytomegalovirus (CMV) infection in humans, they exhibit a state of prolonged functional exhaustion of unknown etiology. To investigate the suitability of rhesus macaques as a model of primary human CMV infection, we examined the virologic and immunologic features of naturally acquired primary CMV infection in rhesus macaques.JOURNAL ARTICLESCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Structural Analysis of the Kaposi's Sarcoma-Associated Herpesvirus K1 Protein

    No full text
    The K1 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) efficiently transduces extracellular signals to elicit cellular activation events through its cytoplasmic immunoreceptor tyrosine-based activation motif (ITAM). In addition, the extracellular domain of K1 demonstrates regional homology with the immunoglobulin (Ig) family and contains conserved regions (C1 and C2) and variable regions (V1 and V2). To generate mouse monoclonal antibodies directed against the KSHV K1 protein, BALB/c mice were primed and given boosters with K1 protein purified from mammalian cells. Twenty-eight hybridomas were tested for reactivity with K1 protein by enzyme-linked immunosorbent assay, immunofluorescence, flow cytometry, immunohistochemistry, and immunoblotting. Deletion mutants of the K1 extracellular domain were used to map the epitope of each antibody. All antibodies were directed to the Ig, C1, and C2 regions of K1. Furthermore, antibody recognition of a short sequence (amino acids 92 to 125) of the C2 region overlapping with the Ig region of K1 efficiently induced intracellular free calcium mobilization; antibody recognition of the other regions of K1 did not. The efficient signal transduction of K1 induced by antibody stimulation required both the ITAM sequence of the cytoplasmic domain and the normal structure of the extracellular domain. Finally, immunological assays showed that K1 was expressed during the early lytic cycle of viral replication in primary effusion lymphoma cells. K1 was readily detected in multicentric Castleman's disease tissues, whereas it was not detected in Kaposi's sarcoma lesions, suggesting that K1 is preferentially expressed in lymphoid cells. Thus, these results indicate that the conserved regions, particularly the Ig and C2 regions, of the K1 extracellular domain are exposed on the outer surface and play an important role in K1 structure and signal transduction, whereas the variable regions of K1 appear to be away from the surface

    A New World Primate Deficient in Tetherin-Mediated Restriction of Human Immunodeficiency Virus Type 1 ▿ †

    No full text
    Human immunodeficiency virus type 1 (HIV-1) does not replicate in primary cells of New World primates. To better understand this restriction, we expressed owl monkey (Aotus nancymaae) CD4 and CXCR4 in the owl monkey kidney cell line, OMK. An HIV-1 variant modified to evade the owl monkey restriction factor TRIM-cyp replicated efficiently in these cells but could not replicate in primary A. nancymaae CD4-positive T cells. To understand this difference, we examined APOBEC3G and tetherin orthologs from OMK cells and primary A. nancymaae cells. We observed that OMK cells expressed substantially lower levels of APOBEC3G than did A. nancymaae cells. A. nancymaae, but not marmoset (Callithrix jacchus), APOBEC3G was partially downregulated by HIV-1 vif and reduced but did not abolish HIV-1 replication when stably expressed in OMK cells. The functional difference between A. nancymaae and marmoset APOBEC3Gs mapped to residue 128, previously shown to distinguish African green monkey from human APOBEC3G. We also characterized tetherin orthologs from OMK and A. nancymaae cells. The A. nancymaae tetherin ortholog, but not OMK tetherin, prevented HIV-1 release. Alteration of threonine 181 of OMK tetherin rescued its function and its efficient N glycosylation. All alleles of Aotus lemurinus griseimembra examined, but none of A. nancymaae or Aotus vociferans, encoded this nonfunctional tetherin ortholog. Our data indicate that HIV-1 replication in owl monkeys is not restricted at entry but can be limited by APOBEC3G and tetherin. Further, A. lemurinus griseimembra does not restrict HIV-1 replication via tetherin, a property likely useful for the study of tetherin-restricted viruses

    Distribution of T lymphocyte subsets in circulating NKT cells and total T lymphocytes in sooty mangabeys.

    No full text
    <p>*Paired <i>t</i>-test.</p><p><sup>@</sup>Mean % and Standard Deviation in 13 SIV-negative sooty mangabeys.</p
    • …
    corecore